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ABSTRACT: This work covers analysis of the effect of temperature distribution in cutting tool life and wear using 

finite element methods. By modeling the heat intensity at the shear zone as non-uniform, this study tries to obtain 

cutting forces, stress distributions on the tool rake face and temperature distributions in the deformation zones. In 

effort to consider the temperature rise on the chip side and also on the tool side along the interface, the heat source 

method introduced by Jaeger in 1992 was applied. Three dimensional steady heat transfer finite element model 

problem was designed with boundary conditions that includes specified temperature, insulated condition and active 

condition. From the experimental, analytical and simulation results; the carbide cutting tool when air cooled 

maintained constant temperature of 298
0
K, but when the cutting tool is insulated the temperature increases rapidly. 

The FEM analysis and ANSYS simulation show that the cutting tool when its base is convecting has the maximum 

temperatures of 404
0
K and 386.485

0
K respectively. The same results were obtained in both cases when the cutting 

tool base is insulated. 

 

Keywords: Temperature, Carbide Cutting Tool, Finite Element, Heat Transfer, Simulation, Stress.      

 
I. INTRODUCTION 

 Machining is an important manufacturing operation in industry. The purpose of a machining process is to 

generate a surface having a specified shape and acceptable surface finish, and to prevent tool wear and thermal 

damage that leads to geometric inaccuracy of the finished part. The thermodynamic approach to the activity at the 

cutting edge attempts to account for the energy consumed. Research has shown that at least 99 percent of the input 

energy is converted into heat by deformation of the chip and by friction of the chip and workpiece on the tool 

[1],[2]. The interface at which the chip slides over the tool is normally the hottest region during cutting. The actual 

temperature is strongly affected by workpiece material, cutting speed, feed, depth of cut, tool geometry, coolant, and 

many other variables. Due to the interaction of the chip and tool, which takes place at high pressures and 

temperatures, the tool will always wear.  

 The most important part of the work generated during the cutting process is converted into heat [3]. A large 

number of techniques have been developed to quantify the temperature, which can be classified as intrusive or non-

intrusive techniques. Because of the highly nonlinear nature of metal cutting and the complex coupling between 

deformation and temperature fields, a complete understanding of the mechanics of metal cutting is still lacking and 

is thus the topic of a great deal of current research. 

 

II. REVIEW OF LITERATURES 
There are three main regions concerned with heating during the cutting process: The primary shear zone 

where the chip is formed and characterized by high plastic deformation; the secondary deformation zone, where the 

deformation takes place in the tool-chip interface as a result of friction force; the tertiary deformation zone, where 

the heat is generated due to friction between tool clearance face and newly generated workpiece surface. Fig, 1 

shows generation of heat in metal cutting. 
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Numerous methods have also been applied to predict temperatures in machining processes [4],[5],[6],[7] 

used finite element method and [8] used finite difference method to determine the proportion in which the cutting 

energy is distributed among the tool, chip and workpiece. Radulescu and Kapoor (1994) [9] developed an analytical 

model for prediction of tool temperature fields in continuous or interrupted three dimensional cutting processes. The 

analysis predicts time dependent heat fluxes into the cutting tool, and it only requires the cutting forces as inputs. 

Pyrometry techniques are often used to study the mechanical behaviour of material because they have many 

advantages compared to the thermocouple techniques [10]. At the forefront of analytical modeling, based on the 

moving heat source method, the analytical modeling of steady-state temperature in metal cutting has been presented 

by [11], [12], and more recently by [13]. In evaluating the combined effects of two heat sources, [13] considered the 

effect of the primary heat source on the final temperature rise within the tool by introducing an induced stationary 

rectangular heat source caused by the primary heat source.  

 The heat source method introduced by [14], [15] is applied in this study. The temperature rises on the chip 

side and also on the tool side along the interface; thus the tool–chip interface boundary is adiabatic for the tool and 

the chip respectively. Similarly, the tool–workpiece interface boundary is considered to be adiabatic for the tool and 

the workpiece respectively. Outeiro et al (2004) [16] developed a 3D dynamic temperature field control models that 

calculates the temperature of heat sources in the light of tool temperature distribution information. The materials 

used for machining includes Ti-6Al-V4 and AISI 1008, with varying LN2 coolant jet configurations and then 

analyzed using finite element technique.  

 

2.1 Temperature Fields in Machining Processes 
 

The temperature of a tool plays an important role in thermal distortion and the machined part‘s dimensional 

accuracy, as well as tool life in machining. The most significant factors in tool wear are temperature and the degree 

of chemical affinity between the tool and the workpiece. Research has shown that at least 99 percent of the input 

energy is converted into heat by deformation of the chip and by friction of the chip and workpiece on the tool 

[1],[2]. The interface at which the chip slides over the tool is normally the hottest region during cutting. The actual 

temperature is strongly affected by workpiece material, cutting speed, feed, depth of cut, tool geometry, coolant, and 

many other variables [12]. Due to the interaction of the chip and tool, which takes place at high pressures and 

temperatures, the tool will always wear.. 

  A review of the most common experimental techniques for temperature measurement in metal cutting 

processes reveals that these techniques can be classified as: direct conduction, indirect radiation, and metallographic. 

These techniques have been reviewed by [3],[17], and more recently by [13], [18], and [19]. Generally, these 

techniques include: tool-work thermocouples, embedded thermocouples, radiation pyrometers, metallographic 

techniques and a method of using powders of constant melting point.  

 

2.2. Numerical Models 
 

Finite element simulations have been successfully applied for modelling orthogonal metal cutting 

processes. They have significantly reduced the simplifying assumptions of the analytical models. Generally, 

application of finite element modelling to cutting processes involves two types of formulations; Eulerian or an 

updated Lagrangian. Moriwaki and Ceretti (1986) [20] presented a further development of Tay‘s finite element 

 
Fig.1: Generation of heat in metal cutting 
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model and extended its range of application.  

 Fairweather (1978) [21] presented a finite element solution for the heat transfer problem for the shear plane 

temperature. They suggested that the band heat source did not move along the shear plane relative to the workpiece 

as had been assumed by [22]. Moriwaki and Ceretti (1986) [20] developed a thermo-viscoplastic cutting model by 

using finite element method to analyse the mechanics of steady-state orthogonal cutting process. Validation of the 

cutting temperature was performed by comparing the simulated temperature distributions, maximum temperature 

and the location of maximum temperature with Tay et al.‘s results and was found in good agreement. The finite 

element analysis of the orthogonal cutting process conducted by [23] was based on a modified Coulomb‘s friction 

model at the tool-chip interface and a stress-based chip separation criterion and the assumption of adiabatic heating 

conditions. The authors were able to estimate the local temperature rise in the primary and the secondary 

deformation zones 

 
III. MATERIALS AND RESEARCH METHODS 

Series of experiments were conducted to investigate the temperature distribution in metal cutting operation 

using carbide cutting tool. The experiment was conducted at Nigerian Machine Tool Osogbo, Osun State.The 

experimental setup Fig. 2 consists of a constant temperature bath, ice bath, tool-holder voltmeter, k – type 

thermocouples, D-C power supply and the machine tool. k – type thermocouples were used to measure the transient 

temperatures. Mercury thermometer was used as the reference temperature when the base is not insulated and when 

the base is insulated. The results obtained from the experiment were summarized in Tables 1and 2. A typical finite 

element mesh used in this work is illustrated in Fig.4. The carbide cutting tool was discretized into 183 nodes and 72 

elements. Triangular type of element was used. FlexPDE Software was developed to determine the temperatures at 

the nodal points. 
 

3.1. Experimental Techniques 
 

The technique that was used in the determination of temperature distribution when the carbide cutting tool 

was not insulated is Tool-Work Thermocouple Technique (Fig. 2). Temperature was measured at the point closer to 

the hot junction (the contact area between the work piece and carbide cutting tool). The technique that was used in 

measuring temperature distribution when the carbide cutting tool was insulated is Embedded Thermocouple 

Technique (Fig. 3). In this method, holes were drilled in the carbide cutting tool that was insulated in order to insert 

the thermocouple for the measurement of the temperature distribution. ` 
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Fig. 2: The experimental set up of the tool-work thermocouple method 
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 Fig.4 shows the finite element discretization of the carbide cutting tool where heat is dissipated at the tip of 

the cutting tool. In this work, triangular sections are taken to allow for the application of the triangular elements in 

the modeling of the cutting tool. It is assumed that triangular element results with approximate 3-D element results. 

Hence existing 3-D software is used to solve the model of the cutting tool. 
 

 

 

 

 

Table 1: Temperature versus time when the base is not insulated 

Time (Sec) Temperature (
o
K) 

0 

10 

50 

100 

150 

200 

250 

297.5 

297.5 

297 

297.5 

298 

298 

298 

  

Table 2: Temperature versus time when the base is insulated 

Time (Sec) Temperature (
o
K) 

0 

10 

50 

100 

150 

200 

250 

296.5 

297 

305 

320 

340 

365 

378 

  thermocouple 

 

    
 

 
Fig. 3: The experimental set up of the embedded thermocouple method 

 

 
Fig. 4: finite element discretization of the carbide cutting 

tool  
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IV. FINITE ELEMENT FORMULATION FOR THE HEAT CONDUCTION 

EQUATION 

In many practical machining situations, finding the temperature in a solid body is of vital importance in 

terms of the maximum allowable temperature, In this study, the derivation of the finite element equations was 

carried out using Variational method as well as Galerkin method for the three dimensional heat conduction equation. 

The governing differential equation for the steady state is given as; 
𝜕

𝜕𝑥
 𝑘𝑥

𝜕𝑇

𝜕𝑥
 +

𝜕

𝜕𝑦
 𝑘𝑦

𝜕𝑇

𝜕𝑦
 +

𝜕

𝜕𝑧
 𝑘𝑧

𝜕𝑇

𝜕𝑧
 = 0                                                                     (1) 

4.1  Variational Approach 

The variational integral, I, corresponding to the above differential equation with its boundary conditions is given by; 

𝐼 𝑇 =
1

2
  𝑘𝑥  

𝜕𝑇

𝜕𝑥
 

2

+ 𝑘𝑦  
𝜕𝑇

𝜕𝑦
 

2

+ 𝑘𝑧  
𝜕𝑇

𝜕𝑥
 

2

 Ω +
𝑠1

 𝑞𝑇𝑑𝑠 +
𝑠2

 
1

2
𝑕

𝑠3

 𝑇 − 𝑇𝛼 2                     (2)    

The given domain   is divided into ‗n‘ number of finite elements with each element having ‗r‘ nodes. The 

temperature is expressed in each element by; 

𝑇𝑒 =  𝑁𝑖𝑇𝑖 =  𝑁 𝑇                                          (3) 

where   rNNNNN ....,,, 321  are shape functions and (4) is the vector of nodal temperature, thus; 

 𝑇 =  

𝑇𝑖

𝑇𝑗

⋮
𝑇𝛾

                                                                  (4) 

The finite element solution to the problem involves selecting the nodal values of T so as to make the function I (T) 

stationary. In order to make I (T) stationary, with respect to the nodal values of T, It is required that; 

𝜕𝐼 𝑇 =  
𝜕𝑇𝑒

𝜕𝑇𝑖

= 0                                             (5) 

Where n is the total number of discrete values of T assigned to the solution domain. Since Ti is arbitrary, (5) holds 

true only if; 
𝜕𝐼

𝜕𝑇𝑖

= 0                                                                     (6) 

The functional I (T) can be written as a sum of individual functions, defined for the assembly of elements, only if the 

shape functions giving piece-wise representation of T obey certain continuity and compatibility conditions; 

𝐼 𝑇 =  𝐼𝑒(𝑇𝑒)                                                  (7) 

Thus, instead of working with a functional defined over the whole solution region attention is now focused on a 

functional defined for the individual elements. Hence; 

𝜕𝐼 =  𝐼𝑒 𝑇𝑒                                                  (8) 

𝜕𝐼 =  𝜕𝐼𝑒

𝑛

𝑒=1

= 0                                                   (9)      

where the variation in 
eI is taken only with respect to the r nodal values associated with the element e, that is,  

 
𝜕𝐼𝑒

𝜕𝑇
 =

𝜕𝐼𝑒

𝜕𝑇𝑗

= 0       𝑤𝑖𝑡𝑕 𝑗 = 1,2, …… … . . 𝑟                               (10) 

Equation (10) comprises a set of r equations that characterize the behavior of the element e. The fact that we can 
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represent the functional for the assembly of elements as a sum of the functional for all individual elements provides 

the key to formulating individual element equations from a variational principle. The complete set of assembled 

finite element equations for the problem is obtained by adding all the derivatives of  I, as given by (10), for all the 

elements. We can write the complete set of equations as; 

𝜕𝐼

𝜕𝑇𝑗

=  
𝜕𝐼𝑒

𝜕𝑇𝑖

= 0

𝑛

𝑖=1

         𝑤𝑖𝑡𝑕 𝑖 = 1,2, …… …𝑛                 (11) 

The problems are complete when the n set of equations is solved simultaneously for the n nodal values of T. We 

now give the details for formulating the individual finite element equations from a variational principle. 

𝐼𝑒 =
1

2
  𝑘𝑥  

𝜕𝑇𝑒

𝜕𝑥
 

2

+ 𝑘𝑦  
𝜕𝑇𝑒

𝜕𝑦
 

2

𝑘𝑧  
𝜕𝑇𝑒

𝜕𝑧
 

2

− 2𝐺𝑇𝑒 
𝛺

𝑑𝜴 +  𝑞𝑇𝑒𝑑𝑠 +
𝒔𝟐

 
1

2
𝑕 𝑇𝒆 − 𝑻𝜶 𝟐

𝑠3

𝑑𝑠       (12) 

With 

𝑇𝑒 =  𝑁 𝑇 =  𝑁1, 𝑁2, … . 𝑁𝛾  

𝑇1

𝑇2

⋮
𝑇𝛾

 = 𝑁1𝑇1 + 𝑁2𝑇2 …… + 𝑁𝛾𝑇𝛾                                 (13) 

And 

𝜕𝑇𝑒

𝜕𝑇1

= 𝑁1,
𝜕𝑇𝑒

𝜕𝑇2

= 𝑁2,
𝜕𝑇𝑒

𝜕𝑇𝛾

= 𝑁𝛾                                            (14) 

Or                                        
𝜕𝑇𝑒

𝜕 𝑇 
=  

𝑁1

𝑁2

𝑁𝛾

 =  𝑁 =  𝑁 𝛾                                                         (15) 

The gradient matrix is written as; 

 𝑔 =

 
 
 
 
 
 
 
𝜕𝑇𝑒

𝜕𝑥
𝜕𝑇𝑒

𝜕𝑦
𝜕𝑇𝑒

𝜕𝑧  
 
 
 
 
 
 

=

 
 
 
 
 
 
 
𝜕𝑁1

𝜕𝑥
𝜕𝑁1

𝜕𝑦
𝜕𝑁1

𝜕𝑧  
 
 
 
 
 
 

 

𝑇1

𝑇2

𝑇𝛾

 =  𝐵 𝑇                                                    (16) 

If we consider as follows, 

 𝑔 𝛾 𝐷 𝑔 =  
𝜕𝑇𝑒

𝜕𝑥

𝜕𝑇𝑒

𝜕𝑦

𝜕𝑇𝑒

𝜕𝑧
  

𝑘 0 0
0 𝑘 0
0 0 𝑘

 

 
 
 
 
 
 
 
𝜕𝑇𝑒

𝜕𝑥
𝜕𝑇𝑒

𝜕𝑦
𝜕𝑇𝑒

𝜕𝑧  
 
 
 
 
 
 

= 𝑘𝑥  
𝜕𝑇𝑒

𝜕𝑥
 

2

+ 𝑘𝑦  
𝜕𝑇𝑒

𝜕𝑦
 

2

+ 𝑘𝑧  
𝜕𝑇𝑒

𝜕𝑥
 

2

               (17) 

Substituting into equation (14) we have 

𝐼𝑒 =
1

2
   𝑔 𝛾 𝐷 𝑔 − 2𝐺𝑇𝑒 𝑑Ω +
Ω

 𝑞𝑇𝑒𝑑𝑠 +
𝑠2

 
1

2
𝑕 𝑇𝑒 − 𝑇𝛼 2

𝑠3

𝑑𝑠                                     (18) 

From equation (15) we can substitute             TBDBTgDg
TTT

  and minimizing the integral, we have 

(employing (18)) 
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𝜕𝐼𝑒

𝜕 𝑇 
=  

1

2
2  𝐵 𝛾  𝐷 𝐵 𝑇  𝜕Ω

Ω

−  
1

2
2𝐺 𝑁 𝛾  𝑇 𝜕Ω +  𝑞 𝑁 𝛾  𝑇 𝑑𝑠 +  𝑕 𝑁 𝛾  𝑇 𝑑𝑠 −  𝑕 𝑁 𝛾𝑇𝑒𝑑𝑠 = 0          

𝑠3𝑒𝑠3𝑒𝑠2𝑒Ω

       (19) 

     

The above equation can be written in a compact form as 

 𝐾 𝑇 =  𝑓                                  (20) 

Where                 𝐾 =    𝐵 𝛾 𝐷 𝐵  𝑑Ω +  𝑕 𝑁 𝛾  𝑁 𝑑𝑠
𝑠2Ω

                            (21)    

And                   𝑓 =  𝐺 𝑁 𝛾𝑑Ω −  𝑞 𝑁 𝛾𝑑𝑠
𝑠2Ω

+  𝑕𝑇𝑒 𝑁 𝛾
𝑠2

𝑑𝑠                       (22) 

 

Equations (20) form the backbone of the calculation method for a finite element analysis of heat conduction 

problems. It can be easily noted that when there is no heat generation within an element (G= 0), the corresponding 

term disappears. Similarly, for an insulated boundary (i.e. q = 0 or h = 0) the corresponding term again disappears. 

In this respect, this is a great deal more convenient as compared to the finite difference method, where nodal 

equations have to be written for insulated boundaries. 

 𝐶  
𝜕𝑇

𝜕𝑡
 + 𝐾 𝑇 =  𝑓                                                 (23) 

𝐶𝑖𝑗𝑘  
𝜕𝑇𝑖𝑗𝑘

𝜕𝑡
 + 𝐾𝑖𝑗𝑘  𝑇𝑖 =  𝑓                                     (24) 

 𝐶𝑖𝑗𝑘  =  ℓ𝐺𝑁𝑖𝑑𝐾
𝛼

                                               (25) 

 𝐶 =   𝑁 𝑑𝑛
𝛼

                                                       (26) 

𝑓 =  𝐺 𝑁 𝛾𝑑𝑛
𝛼

−  𝑞 𝑁 𝛾

𝛾

𝑑 𝑞 +  𝑕𝑇𝛼
𝛾

 𝑁 𝑇𝑑𝑟                                   (27) 

As G = 0, then; 

𝑓 = −   𝑞  𝑞 𝑁 𝛾𝑑 𝑞 +  𝑕𝑇𝛼  𝑁 𝛾

𝛾

𝑑𝛾                                                 (28) 

 𝑁 𝛾 =  𝑁𝑖𝑁𝑗 𝑁𝑘                                                           (29) 

𝑇 =  

𝑇𝑖

𝑇𝑗

𝑇𝑘

                                                                          (30) 

𝜕𝑇

𝜕𝑡
=

𝑇𝑛 + 1 − 𝑇𝑛

∆𝑡
                                                             (31) 

𝐶  
𝑇𝑛+1 − 𝑇𝑛

∆𝑡
 + 𝐾 𝑇𝑛 = 𝑓                                          (32) 

𝐶

∆𝑡
 𝑇𝑛+1 − 𝑇𝑛 =  𝑓 − 𝐾 𝑇𝑛                                                (33) 

𝐶 𝑇𝑛+1 = 𝐶 𝑇𝑛 + ∆𝑡  𝑓 − 𝐾 𝑇𝑛                                             (34) 



Analytical Modeling Of Temperature Distribution In Metal Cutting: Finite Element… 

www.ijesi.org                                                        24 | P a g e  

4.2.  The Galerkin’s Method 

In this subsection, the application of the Galerkin‘s method for the transient equation subjected to appropriate 

boundary and initial conditions is addressed. The temperature is discretized over space as follows: 

𝑇 𝑥, 𝑦, 𝑧, 𝜏 =  𝑁𝑖 𝑥, 𝑦, 𝑧 

𝛾

𝑖

𝑇𝑖 𝑡                                           (35) 

where i  are the shape functions, r  is the number of nodes in an element, and  ti  are the time-dependent nodal 

temperatures. The Galerkin representation is given as; 

 𝑁𝑖
Ω

 
𝜕

𝜕𝑥
 𝐾𝑥 𝑇 

𝜕𝑇

𝜕𝑥
 +

𝜕

𝜕𝑦
 𝐾𝑦  𝑇 

𝜕𝑇

𝜕𝑦
 +

𝜕

𝜕𝑧
 𝐾𝑧 𝑇 

𝜕𝑇

𝜕𝑧
 − 𝜌𝑐𝜌

𝜕𝑇

𝜕𝑡
 𝑑Ω = 0                   (36) 

Employing integration by parts on the three terms of Equation (47), we get; 

−   𝐾𝑥 𝑇 
𝜕𝑁𝑖

𝜕𝑥

𝜕𝑇

𝜕𝑥
+ 𝐾𝑦  𝑇 

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑇

𝜕𝑦
+ 𝐾𝑧 𝑇 

𝜕𝑁𝑖

𝜕𝑧

𝜕𝑇

𝜕𝑧
− 𝑁𝑖𝜌𝑐𝜌

𝜕𝑇

𝜕𝑡
 𝑑Ω

Ω

+  𝑁𝑖𝐾𝑥 𝑇 
𝜕𝑇

𝜕𝑥
𝑙𝑑𝑇𝑖𝑗 +  𝑁𝑖𝐾𝑦 𝑇 

𝜕𝑇

𝜕𝑦
𝑚𝑑𝑇𝑖𝑗

𝑇𝑖𝑗

+  𝑁𝑖𝐾𝑧 𝑇 
𝜕𝑇

𝜕𝑧
𝑛𝑑𝑇𝑖𝑗

𝑇𝑖𝑗

= 0               (37)
𝑇𝑖𝑗

 

Note that from Equation (37) 

= −  𝑁𝑖𝑞𝑑𝑇𝑖𝑗 −
𝑇𝑖𝑗

 𝑁𝑖𝑕 𝑇 − 𝑇𝑖 𝑑𝑇𝑖𝑗
𝑇𝑖𝑗

                                                                   (38) 

On substituting the spatial approximation from Equation (35), Equation (37) finally becomes; 

−   𝐾𝑥 𝑇 
𝜕𝑁𝑖

𝜕𝑥

𝜕𝑇

𝜕𝑥
𝑇𝑖 𝑡 + 𝐾𝑦  𝑇 

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑇

𝜕𝑦
𝑇𝑖 𝑡 + 𝐾𝑧 𝑇 

𝜕𝑁𝑖

𝜕𝑧

𝜕𝑇

𝜕𝑧
𝑇𝑖 𝑡 − 𝑁𝑖𝜌𝑐𝜌

𝜕𝑇

𝜕𝑡
 𝑑Ω

Ω

+   −𝑁𝑖𝜌𝑐𝜌

𝜕𝑁𝑖

𝜕𝑡
𝑇𝑖 𝑡  

Ω

𝑑Ω −  𝑁𝑖𝑞𝑑𝑇𝑖𝑗 −
𝑇𝑖𝑗

 𝑁𝑖𝑕 𝑇 − 𝑇𝛼 𝑑𝑇𝑖𝑗
𝑇𝑖𝑗

= 0              (39) 

Where i and j represent the nodes, Equation (43) can be written in a convenient form as; 

 𝐶  
𝜕𝑇

𝜕𝑡
 +  𝐾 𝑇 =  𝑓                                                                  (40) 

 𝐶𝑖𝑗𝑘   
𝜕𝑇𝑖

𝜕𝑡
 +  𝐾𝑖𝑗  𝑇𝑖𝑗  =  𝑓𝑖                                                         (41) 

Where 

 𝐶𝑖𝑗  =  𝜌𝑐𝜌𝑁𝑖𝑁𝑗𝑑Ω
Ω

                                                                             (42) 

 𝐾𝑖𝑗  =   𝐾𝑥 𝑇 
𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑗

𝜕𝑥
 𝑇𝑖 + 𝐾𝑦 𝑇 

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑗

𝜕𝑦
 𝑇𝑖 + 𝐾𝑧 𝑇 

𝜕𝑁𝑖

𝜕𝑧

𝜕𝑁𝑗

𝜕𝑧
 𝑇𝑖  

Ω

𝑑Ω +  𝑕𝑁𝑖𝑁𝑗 𝑑𝑡
𝛾

                   (43) 

And 

 𝑓 = −  𝑞𝑁𝑖𝑑𝑇𝑖𝑗
𝛾𝑞

+  𝑁𝑖𝑕𝑇𝛼𝑑𝑇
𝛾𝑞

                                                       (44) 

In matrix form, 

 𝐶 =  𝜌𝑐𝜌  𝑁 𝑇

Ω

 𝑁 𝑑Ω                                                                (45) 
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And                           𝐾 =   𝐵 𝑇 𝐷 𝐵 
Ω

𝑑Ω +  𝑕 𝑁 𝑇
𝛾

 𝑁 𝑑𝑇                               (46)   

                                𝑓 = −  𝑞 𝑁 𝑇
𝛾

𝑑𝛾 +  𝑕𝑇𝛼𝑁𝑇
𝛾

𝑑𝛾                                   (47)   

For a linear triangular element, the temperature distribution can be written as; 

𝑇 = 𝑁𝑖𝑇𝑖 + 𝑁𝑗 𝑇𝑗 + 𝑁𝑘𝑇𝑘                                             (48) 

The thermal conductivity matrix becomes; 

𝐷 =  
𝐾 0 0
0 𝐾 0
0 0 𝐾

                                                                     (49) 

The shape functions for a triangular element are given as (Fairweather, 1978), thus; 

𝑁𝑖 =  1 −
𝑥

3𝑎
  1 −

𝑦

3𝑏
  1 −

𝑧

3𝑐
                                        (50) 

𝑁𝑗 =
𝑥

3𝑎
 1 −

𝑦

3𝑏
  1 −

𝑧

3𝑐
                                                     (51) 

𝑁𝑘 =
𝑥𝑦𝑧

27𝑎𝑏𝑐
                                                                               (52) 

But                                 𝐾 =   𝐵 𝑇 𝐷 𝐵 
Ω

𝑑𝑣 +  𝑕 𝑁 𝑇
𝛾

 𝑁 𝑑𝛾                              (53) 

The gradient matrix is given by; 

𝑔 =

 
 
 
 
 
 
 
𝜕𝑇

𝜕𝑥
𝜕𝑇

𝜕𝑦
𝜕𝑇

𝜕𝑧 
 
 
 
 
 
 

=

 
 
 
 
 
 
 
𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑗

𝜕𝑥

𝜕𝑁𝑘

𝜕𝑥
𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑗

𝜕𝑦

𝜕𝑁𝑘

𝜕𝑦

𝜕𝑁𝑖

𝜕𝑧

𝜕𝑁𝑗

𝜕𝑧

𝜕𝑁𝑘

𝜕𝑧  
 
 
 
 
 
 

                                           (54) 

𝐵 =

 
 
 
 
 
 
 
𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑗

𝜕𝑥

𝜕𝑁𝑘

𝜕𝑥
𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑗

𝜕𝑦

𝜕𝑁𝑘

𝜕𝑦

𝜕𝑁𝑖

𝜕𝑧

𝜕𝑁𝑗

𝜕𝑧

𝜕𝑁𝑘

𝜕𝑧  
 
 
 
 
 
 

                                                            (55) 

4.3.  Using the method of Separation of Variables 

The three-dimensional transient heat conduction equation is; 

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
=

1

𝛼𝛾

𝜕𝑇

𝜕𝑡
                                                     (56) 

Where T  is the thermal diffusivity of the material. 

Let 

𝜃 =
𝑇 − 𝑇∞

𝑇𝛼 − 𝑇∞

                                                                              (57) 

The initial condition is:                𝜃 𝑥, 𝑦, 𝑧, 0 = 1                                                               (58)  

The boundary conditions for the model when the cutting tool is not insulated are as follows; 

 A(i). The heat source is considered as a plane heat source on the top face of the insert with the following 
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expression. 

−𝐾
𝜕𝜃

𝜕𝑥
  𝑥, 𝑦, 𝑧, 𝑡  𝑧=𝑐 =  

𝑞𝑐  𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 𝐿𝑥 , 0 ≤ 𝑦 ≤ 𝐿𝑦

𝑕𝜃                               𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
                       (59) 

Where qc is the heat flux flowing into the tool insert. 

 A(ii). The adiabatic boundary conditions are assumed for the two surfaces which are close to the heat source (x = 0, 

y = 0) and the bottom surface (z =c) hence; 
𝜕𝜃 0, 𝑦, 0 ≤ 𝑧 ≤ 𝑐, 𝑡 

𝜕𝑥
= 0                                                        60  

𝜕𝜃 0, 𝑦, 0 ≤ 𝑧 ≤ 𝑐, 𝑡 

𝜕𝑦
= 0                                                       (61) 

 𝜕𝜃 𝑥, 𝑦, 𝑧, 𝑡 

𝜕𝑧
 
𝑧=0

= 0                                                                  (62) 

 

 

 

 

 

 

 

A(iii). The ambient boundary conditions are assumed for the two surfaces which are at the distance from the heat 

source (x = a, y = b) can be described as: 

𝜃 𝑎, 𝑦, 𝑧, 𝑡 = 0                                                                    (63) 

𝜃 𝑥, 𝑏, 𝑧, 𝑡 = 0                                                                    (64) 

The boundary conditions for the model with air-cooled are: 

B(i). The adiabatic boundary conditions for the two surfaces which are close to the heat source (x=0, y = 0), the 

bottom surface (z = c) and the surface of insert (x = a, 0 < y < b, 0 < z < c) which is far away from heat source: 

𝜃 0, 𝑦, 0 ≤ 𝑧 ≤ 𝑐, 𝑡 = 0                                                      (65) 

𝜃 𝑥, 0,0 ≤ 𝑧 ≤ 𝑐, 𝑡 = 0                                                      (66) 

𝜃  𝑥, 𝑦, 𝑧, 𝑡  𝑧=𝑐 = 0                                                             (67) 

𝜃 𝑎, 0 ≤ 𝑦 ≤ 𝑏, 0 ≤ 𝑧 ≤ 𝑐, 𝑡 = 0                                      (68) 

Now, by using the method of separation of variables; 

𝜕2𝜃

𝜕𝑥
+

𝜕2𝜃

𝜕𝑦
+

𝜕2𝜃

𝜕𝑧
=

1

𝛼

𝜕𝜃

𝜕𝑡
                                                     (69) 

Let the solution be; 

𝜃 𝑥, 𝑦, 𝑧, 𝑡 = 𝑋 𝑥 𝑌 𝑦 𝑍 𝑧 𝑇 𝑡                                      (70) 

𝜕2𝜃

𝜕𝑥2
= 𝑋′′  𝑥 𝑌 𝑦 𝑍 𝑧 𝑇 𝑡                                                   (71) 
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𝜕2𝜃

𝜕𝑦2
= 𝑋 𝑥 𝑌′′  𝑦 𝑍 𝑧 𝑇 𝑡                                                   (72) 

𝜕2𝜃

𝜕𝑧2
= 𝑋 𝑥 𝑌 𝑦 𝑍′′  𝑧 𝑇 𝑡                                                   (73) 

𝜕𝜃

𝜕𝑡
= 𝑋 𝑥 𝑌 𝑦 𝑍 𝑧 𝑇 ′ 𝑡                                                       (74) 

So, 

𝑋′ 𝑥 𝑌 𝑦 𝑍 𝑧 𝑇 𝑡 + 𝑋 𝑥 𝑌′ 𝑦 𝑍 𝑧 𝑇 𝑡 + 𝑋 𝑥 𝑌 𝑦 𝑍′ 𝑧 𝑇 𝑡 

=
1

𝛼
𝑋 𝑥 𝑌 𝑦 𝑍 𝑧 𝑇 ′ 𝑡                                            (75) 

On dividing through by   )()()( tTzZyYxX i.e. equation (70)  

We have, 
𝑋′′  𝑥 

𝑋 𝑥 
+

𝑌′′  𝑦 

𝑌 𝑦 
+

𝑍′′  𝑧 

𝑍 𝑧 
=

1

𝛼

𝑇 ′ 𝑡 

𝑇 𝑡 
                                                         (76) 

𝑋′′  𝑥 

𝑋 𝑥 
=

1

𝛼

𝑇 ′ 𝑡 

𝑇 𝑡 
−

𝑌′′  𝑦 

𝑌 𝑦 
−

𝑍′′  𝑧 

𝑍 𝑧 
= −𝛽2                                          (77) 

1

𝑥

𝑑2𝑋

𝑑𝑥2
= −𝛽2                                                                                                  (78) 

𝑑2𝑋

𝑑𝑥2
+ 𝛽2𝑋 = 0                                                                                             (79) 

Then, 

𝑋 = 𝐴𝑐𝑜𝑠𝛽𝑥 + 𝐵𝑠𝑖𝑛𝛽𝑥                                                                             (80) 

𝑋′ = 𝐴𝛽𝑆𝑖𝑛𝛽𝑥 + 𝐵𝛽𝐶𝑜𝑠𝛽𝑥                                                                      (81) 

𝑋′ 0 = 𝐴𝛽𝑆𝑖𝑛0 + 𝐵𝛽𝐶𝑜𝑠0                                                                      (82) 

0 = 𝐵𝛽       𝑕𝑒𝑛𝑐𝑒 𝐵 = 0     𝑆𝑖𝑛𝑐𝑒 𝛽 ≠ 0 

So, on substituting 0 for B, we have; 

𝑋 𝑥 = 𝐴𝐶𝑜𝑠𝛽𝑥                                                                                         (83) 

𝑋 𝛼 = 𝐴𝐶𝑜𝑠𝛽𝛼 = 0                                                                                 (84) 

𝐴 ≠ 0,       𝑡𝑕𝑒𝑛 𝐶𝑜𝑠𝛽𝛼 = 0 

𝐶𝑜𝑠𝛽𝛼 = 𝐶𝑜𝑠  
2𝑚 − 1

2
 𝜋 = 0    𝑓𝑜𝑟  𝑚 = 1,2,3 …… ..                      (85) 

𝛽 =  
2𝑚 − 1

2
 𝜋                                                                                             (86) 

𝑋 𝑥 = 𝐵𝐶𝑜𝑠  
2𝑚 − 1

2
 𝜋𝑥                                                            (87) 

𝑌′′  𝑦 

𝑌 𝑦 
=

1

𝛼

𝑇 ′ 𝑡 

𝑇 𝑡 
−

𝑋′′  𝑥 

𝑋 𝑥 
−

𝑍′′  𝑧 

𝑍 𝑧 
= −𝜇2                                 (88) 

𝑌′′  𝑦 

𝑌 𝑦 
=

1

𝛼

𝑇 ′ 𝑡 

𝑇 𝑡 
−

𝑋′′  𝑥 

𝑋 𝑥 
− 𝛽2 = −𝜇2                                                       (89)

 
𝑌′′

𝑌
= −𝜇2                                                                                                             (90) 

𝑑2𝑦

𝑑𝑦2
+ 𝜇2𝑌 = 0                                                                                                 (91) 

𝑌 𝑦 = 𝐶 𝐶𝑜𝑠𝜇𝑦 + 𝐷𝑆𝑖𝑛𝜇𝑦                                                                        (92) 

𝑌′ 𝑦 = −𝐶𝜇𝑆𝑖𝑛𝜇𝑦 + 𝐷𝜇𝐶𝑜𝑠𝜇𝑦                                                               (93) 

𝑌′ 0 = 0 = −𝐶𝑆𝑖𝑛0 + 𝐷𝜇 = 0                                                                (94) 

𝐴𝑠   𝐷𝜇 = 0     𝑕𝑒𝑛𝑐𝑒   𝐷 = 0 
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Therefore; 

𝑌 𝑦 = 𝐶 𝐶𝑜𝑠𝜇𝑦                                                                                            (95) 

𝑌 𝑦 = 𝐶 𝐶𝑜𝑠𝜇𝑏 = 0                                                                                    (96) 

𝐶 ≠ 0     𝑕𝑒𝑛𝑐𝑒  𝐶𝑜𝑠𝜇𝑏 = 0 

𝐶𝑜𝑠𝜇𝑏 = 𝐶𝑜𝑠  
2𝑛 − 1

2
 𝜋 = 0           𝑓𝑜𝑟  𝑛 = 1,2,3 … …                      (97) 

𝜇 =  
2𝑛 − 1

2𝑏
 𝜋                                                                                              (98) 

∴ 𝑌 𝑦 = 𝐶 𝐶𝑜𝑠  
2𝑛 − 1

2𝑏
 𝜋𝑦                                                                       (99) 

𝐹𝑜𝑟       
𝑑𝜃

𝑑𝑧
 
𝑧=𝑐

=
𝑞𝑐

𝑘
      𝑎𝑛𝑑       

𝑑𝜃

𝑑𝑧
 
𝑧=0

                                                        (100) 

𝑍 𝑧 =
𝑞𝑐

𝑘
 𝑧 −

𝑧2

2𝑐
            𝐶𝑎𝑟𝑠𝑙𝑎𝑤 𝑎𝑛𝑑 𝐽𝑎𝑒𝑔𝑒𝑟, 1989                         101  

1

𝛼𝑇

𝑑𝑇

𝑑𝑡
= − 𝜇2 + 𝛽2                                                                                         (102)  

𝑑𝑇

𝑇𝑑𝑡
= − 𝜇2 + 𝛽2 𝛼                                                                                        (103) 

𝑑𝑇

𝑇
= − 𝜇2 + 𝛽2 𝛼𝑑𝑡                                                                                       (104)  

𝑙𝑛𝑇 = − 𝜇2 + 𝛽2 𝛼𝑡                                                                                         (105)   

∴ 𝑇 = ℓ− 𝜇 2+𝛽2 𝛼 = ℓ
−  

2𝑚−1
2𝑎

 
2

+ 
2𝑛−1

2𝑏
 

2
𝜋2𝛼 

                                             (106) 

Recall 

  )()()()(,,, tTzZyYxXTzyx   

𝜃 =    𝐴𝐶 

∞

𝑛=1

∞

𝑚=1

 𝐶𝑜𝑠  
2𝑚 − 1

2𝑎
 𝜋𝑥 𝐶𝑜𝑠  

2𝑛 − 1

2𝑏
 𝜋𝑦  

𝑞𝑐

𝑘
 𝑧 −

𝑧2

2𝑐
  ℓ

−  
2𝑚−1

2𝑎
 

2
+ 

2𝑛−1
2𝑏

 
2
𝜋2𝛼 

           (107) 

𝜃 =   𝑃𝑚𝑛

∞

𝑛=1

∞

𝑚=1

 𝐶𝑜𝑠  
2𝑚 − 1

2𝑎
 𝜋𝑥 𝐶𝑜𝑠  

2𝑛 − 1

2𝑏
 𝜋𝑦  

𝑞𝑐

𝑘
 𝑧 −

𝑧2

2𝑐
  ℓ

−  
2𝑚−1

2𝑎
 

2
+ 

2𝑛−1
2𝑏

 
2
𝜋2𝛼 

           (108) 

𝜃 =
𝑞𝑐

𝑘
   𝑃𝑚𝑛

∞

𝑛=1

∞

𝑚=1

𝐶𝑜𝑠  
2𝑚 − 1

2𝑎
 𝜋𝑥 𝐶𝑜𝑠  

2𝑛 − 1

2𝑏
 𝜋𝑦  𝑧 −

𝑧2

2𝑐
  ℓ

−  
2𝑚−1

2𝑎
 

2
+ 

2𝑛−1
2𝑏

 
2
𝜋2𝛼 

           (109) 

𝜃 =
𝑞𝑐

𝑘
 𝑧 −

𝑧2

2𝑐
   𝑃𝑚𝑛

∞

𝑛=1

∞

𝑚=1

 𝐶𝑜𝑠  
2𝑚 − 1

2𝑎
 𝜋𝑥 𝐶𝑜𝑠  

2𝑛 − 1

2𝑏
 𝜋𝑦 ℓ

−  
2𝑚−1

2𝑎
 

2
+ 

2𝑛−1
2𝑏

 
2
𝜋2𝛼 

             (110) 

Also  recall,  

𝜃 =
𝑇 − 𝑇∞

𝑇𝑜 = 𝑇∞

      𝑎𝑡  𝑡 = 0,   𝑇 = 𝑇0     𝑕𝑒𝑛𝑐𝑒  𝜃 = 1 

1 =
𝑞𝑐

𝑘
 𝑧 −

𝑧2

2𝑐
   𝑃𝑚𝑛

∞

𝑛=1

∞

𝑚=1

 𝐶𝑜𝑠  
2𝑚 − 1

2𝑎
 𝜋𝑥 𝐶𝑜𝑠  

2𝑛 − 1

2𝑏
 𝜋𝑦                          (111) 

𝑃𝑚𝑛 =    𝐶𝑜𝑠  
2𝑚 − 1

2𝑎
 𝜋𝑥 𝐶𝑜𝑠  

2𝑛 − 1

2𝑏
 𝜋𝑦  

𝑏

0

𝑎

0

𝑑𝑥𝑑𝑦 =
4𝑎𝑏 −1 𝑚+𝑛

 2𝑚 − 1  2𝑛 − 1 𝜋2
             (112) 

Therefore, 
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𝜃 =
𝑞𝑐  𝑧 −

𝑧2

2𝑐
 

𝑘𝜋2
   

4𝑎𝑏 −1 𝑚+𝑛

 2𝑚 − 1  2𝑛 − 1 𝜋2
𝐶𝑜𝑠  

2𝑚 − 1

2𝑎
 𝜋𝑥 𝐶𝑜𝑠  

2𝑛 − 1

2𝑏
 𝜋𝑦 ℓ

−  
2𝑚−1

2𝑎
 

2
+ 

2𝑛−1
2𝑏

 
2
𝜋2𝛼 

 

∞

𝑛=1

∞

𝑚=1

(113) 

  

 The above equation was simulated by MatLab 7.5  and the results obtained are shown in the figures below. 

Also the following data was employed in the finite element simulation: Width, a = 50mm, Length, b = 50mm, 

Thickness, c = 20mm, Thermal Conductivity = 120W/mK, Density = 7800Kg/m
2 

, Specific Heat = 343.3J/KgK, 

Initial Temperature = 298K, qc  = 8.125x10
6 
W/m

2 
  

Subject to the following boundary conditions: At, x = 25mm, y = 100mm, z = 50mm, T = 298K, and  

At, x = 38.74068mm, y = 38.74068mm, z = 50mm, T= 404.7755K. 
 

 

V. RESULTS OF ANALYSIS AND SIMULATION 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 shows that when the carbide cutting tool was air-cooled, it maintained constant temperature of 298K. This 

result agreed with the results obtained analytically and experimentally. 

 

 

 

 

 

 

 

 

 

 
Fig. 5: The temperature distribution against time on the cutting tool when the base is convecting   

 

 

Fig. 6: Analytical result of the temperature distribution in metal cutting when the base is convecting   
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ig. 6 shows result obtained analytically, it was shown that when the carbide cutting tool was air-cooled, it 

maintained constant temperature of 298K. This agrees with the result of FEM and the result obtained 

experimentally. 

 

 

 

 

 

 

 

 

 

 

Fig. 7 shows that when carbide cutting tool was insulated, the temperature increases rapidly. The result agrees with 

the result obtained analytically and experimentally. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 shows the analytical result for the insulated carbide cutting tool. It was revealed that when the 

carbide cutting tool was insulated, the temperature increases rapidly. The above result agrees with FEM result and 

the result obtained experimentally.  

 

 

 
Fig. 8: Analytical result of the temperature distribution in metal cutting when the base is insulated   

 

 
Fig. 7:  The temperature distribution against time on the cutting tool when the base is insulated   
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From the results obtained in FEM analysis as shown in Fig. 9, it was observed that the maximum 

temperature is 404K and the minimum temperature is 298K. The temperature at any point can be deducted from the 

results above. Therefore, the temperature at the tip of the cutting tool is higher than that far away from the cutting 

tool.   

 

 

 

 

 

 

 

 

 

 

 

 

The ANSY results of Fig. 10 agree with the results obtained in FEM analysis. It has a maximum temperature of 

386.485K at the tip of the carbide cutting tool and the minimum temperature is 298K. 

 

 
Fig. 9: FEM analysis of the temperature distribution on the carbide cutting tool when the base is 

convecting    

 

 

Fig. 10:  ANSYS simulation of the temperature distribution on the cutting tool     
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The maximum temperature of the carbide cutting tool when it was insulated is 404K and the minimum temperature 

is 298K 

 

 

 

 

 

 

 

 

 

 

 

 

 

The maximum temperature obtained from ANSYS simulation when the carbide cutting tool was insulated is 

386.485K and the minimum temperature is 298K. 

 

 
Fig.11: FEM analysis of the temperature distribution on the cutting tool when the base is 

insulated    

 

Fig. 12: ANSYS simulation of the temperature distribution on the cutting tool     
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VI. CONCLUSION 
The temperature distributions of carbide cutting were plotted in Figs. 5-12 comparing boundary conditions 

and cooling effects. It was noted that the air-cooled effects on the heat flux of both heat sources are rather minor. 

Thus, it can be concluded that the air cooled method does not alter the chip formation process. Further, the 

simulation results of boundary conditions and coolants were done to see the effects on the cutting tool with the 

analytical results. The results generated from Finite Element Method and analytical method revealed that the cutting 

tip maintained a constant atmospheric temperature when the cutting tool is efficiently air-cooled but the temperature 

increases rapidly when the tool is subjected to adiabatic boundary conditions. The simulated numerical and 

analytical results reasonably agree with the experimental results obtained from ANSYS. The models can be used to 

investigate the effects of the major parameters on the cooling efficiency. Without involving intensive computation 

for chip formation analysis, this study used the derived heat-source characteristics as the input of temperature 

simulations.  
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